Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly

نویسندگان

  • Reuben J Pengelly
  • Stephanie Greville-Heygate
  • Susanne Schmidt
  • Eleanor G Seaby
  • M Reza Jabalameli
  • Sarju G Mehta
  • Michael J Parker
  • David Goudie
  • Christine Fagotto-Kaufmann
  • Catherine Mercer
  • Anne Debant
  • Sarah Ennis
  • Diana Baralle
چکیده

BACKGROUND Neurodevelopmental disorders have challenged clinical genetics for decades, with over 700 genes implicated and many whose function remains unknown. The application of whole-exome sequencing is proving pivotal in closing the genotype/phenotype gap through the discovery of new genes and variants that help to unravel the pathogenic mechanisms driving neuropathogenesis. One such discovery includes TRIO, a gene recently implicated in neurodevelopmental delay. Trio is a Dbl family guanine nucleotide exchange factor (GEF) and a major regulator of neuronal development, controlling actin cytoskeleton dynamics by activating the GTPase Rac1. METHODS Whole-exome sequencing was undertaken on a family presenting with global developmental delay, microcephaly and mild dysmorphism. Father/daughter exome analysis was performed, followed by confirmatory Sanger sequencing and segregation analysis on four individuals. Three further patients were recruited through the deciphering developmental disorders (DDD) study. Functional studies were undertaken using patient-specific Trio protein mutations. RESULTS We identified a frameshift deletion in TRIO that segregated autosomal dominantly. By scrutinising data from DDD, we further identified three unrelated children with a similar phenotype who harboured de novo missense mutations in TRIO. Biochemical studies demonstrated that in three out of four families, the Trio mutations led to a markedly reduced Rac1 activation. CONCLUSIONS We describe an inherited global developmental delay phenotype associated with a frameshift deletion in TRIO. Additionally, we identify pathogenic de novo missense mutations in TRIO associated with the same consistent phenotype, intellectual disability, microcephaly and dysmorphism with striking digital features. We further functionally validate the importance of the GEF domain in Trio protein function. Our study demonstrates how genomic technologies are yet again proving prolific in diagnosing and advancing the understanding of neurodevelopmental disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct cell guidance pathways controlled by the Rac and Rho GEF domains of UNC-73/TRIO in Caenorhabditis elegans.

The cytoskeleton regulator UNC-53/NAV2 is required for both the anterior and posterior outgrowth of several neurons as well as that of the excretory cell while the kinesin-like motor VAB-8 is essential for most posteriorly directed migrations in Caenorhabditis elegans. Null mutations in either unc-53 or vab-8 result in reduced posterior excretory canal outgrowth, while double null mutants displ...

متن کامل

Trio Combines with Dock to Regulate Pak Activity during Photoreceptor Axon Pathfinding in Drosophila

Correct pathfinding by Drosophila photoreceptor axons requires recruitment of p21-activated kinase (Pak) to the membrane by the SH2-SH3 adaptor Dock. Here, we identify the guanine nucleotide exchange factor (GEF) Trio as another essential component in photoreceptor axon guidance. Regulated exchange activity of one of the two Trio GEF domains is critical for accurate pathfinding. This GEF domain...

متن کامل

Control of Dendritic Morphogenesis by Trio in Drosophila melanogaster

Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and R...

متن کامل

Disrupted-in-Schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling.

Defects in neuronal connectivity of the brain are well documented among schizophrenia patients. Although the schizophrenia susceptibility gene Disrupted-in-Schizophrenia 1 (DISC1) has been implicated in various neurodevelopmental processes, its role in regulating axonal connections remains elusive. Here, a heterologous DISC1 transgenic system in the relatively simple and well-characterized Caen...

متن کامل

The Human Rho-GEF Trio and Its Target GTPase RhoG Are Involved in the NGF Pathway, Leading to Neurite Outgrowth

Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2016